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Abstract The long duration of the COVID-19 pan-
demic allowed for multiple bursts in the infection and
death rates, the so-called epidemic waves. This com-
plex behavior is no longer tractable by simple compart-
mental model and requires more sophisticated math-
ematical techniques for analyzing epidemic data and
generating reliable forecasts. In this work, we propose
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aframework for analyzing complex dynamical systems
by dividing the data in consecutive time-windows to be
separately analyzed. We fit parameters for each time-
window through an approximate Bayesian computa-
tion (ABC) algorithm, and the posterior distribution of
parameters obtained for one window is used as the prior
distribution for the next window. This Bayesian learn-
ing approach is tested with data on COVID-19 cases in
multiple countries and is shown to improve ABC per-
formance and to produce good short-term forecasting.
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1 Introduction

Since the onset of the novel Coronavirus (SARS-
CoV-2) pandemic, computational methodologies have
played a fundamental role in helping to understand the
dynamics of the spread of the virus in society [1]. Com-
putational models are capable of capturing, to a cer-
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tain extent, the behavior of the data that describes the
advance of the virus, making it possible to simulate
predictive scenarios that collaborate with the decision-
making of government authorities and in the allocation
of medical and financial resources. Mathematical mod-
els and computer simulations can also provide relevant
indicators to assist in the implementation of social dis-
tancing measures, hoping to stave off the advance of the
disease. Adiga et al. [2] present a comparative analysis
of computational models used to describe the behavior
of the epidemic. Challenges of modeling COVID-19
are discussed in Refs. [3,4], whereas Eker [5] analyzes
the validity and usefulness of computational models in
such context.

To date, the world has had more than 378 million
confirmed cases, with more than 569 million individu-
als dead [6]. In several countries, the number of daily
cases has already had at least two waves of infection,
when a meaningful increase in the number of cases
occurs after a significant drop in the number of new
infections during the previous wave. Numerous com-
partmental models, which have been widely used to
simulate the spreading of COVID-19 [7], in its canon-
ical form, have no descriptive capacity to represent
the behavior of data with multiple waves [8,9]. Fur-
ther drawbacks of the classical SIR model are dis-
cussed by Singh and Gupta [10]. This poses an even
greater challenge when such models are used to simu-
late the spreading dynamics of COVID-19, requiring
more sophisticated computational frameworks to be
established, to provide more reliable results.

A growing body of literature has proposed compu-
tational models and techniques to overcome the diffi-
culties imposed by the data when the epidemic is at an
advanced stage. Of note, the variety of works related to
the modeling of the second (and subsequent) waves of
COVID-19 is more restricted than those related to the
early stages of the pandemic. Below, we summarize
the most relevant ones that we are aware of. Kaxiras
and Neofotistos [11] extended the forced-SIR model,
proposed in Ref. [12], which provides an approximate
analytical solution for the differential equations that
represent the well-known SIR model, to allow mul-
tiple waves to be captured; Cacciapaglia et al. [13]
model the multi-wave pattern by considering a master
equation for the time-evolution of the total number of
infected individuals in particular locations. Such equa-
tion is based on the epidemic Renormalization Group
(eRG) framework [14], which is extended to include
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the diffusion of the epidemic between multiple nearly
isolated regions; Singh and Gupta [10] propose what
they call the Generalized SIR (GSIR) model, which is
an integrative model encompassing multiple waves that
emerge and vanish within a time interval. Special solu-
tions of the constituent waves of the model are demon-
strated, employing well-known growth functions, lead-
ing to time-varying parameters and a closed-form solu-
tion of all the system parameters.

2 Motivation and objectives

As mentioned before, although there is no current
closed definition for an infection wave, several coun-
tries have had more than one sequence of sharp
increases followed by a substantial drops in the number
of daily new cases, which is popularly characterized
as an infection wave. Typical compartmental models
(such as SIRD and SEIRD) are not capable of cap-
turing this behavior considering its canonical structure
[15]. Such restriction is a result of the basic assump-
tions behind the model, that the population is homoge-
neously mixed, resulting in one single infection wave
until the so-called herd immunity is reached.

To account for inhomogeneous mixing in the pop-
ulation, reinfection due to poor immune response or
immunity loss, specific social behaviors, or govern-
mental policies that can change the infection dynam-
ics, several groups work with modified SIRD/SEIRD
models [16—-18]. However, adding more compartments
may drastically increase the number of parameters to
be fitted in the model. For instance, Ramezani et al.
[17] implement a modified SEIRD model to account
for asymptomatic patients and individuals who self-
isolate (SEARIDQ model), which uses a total of 14
parameters. Such an increase in the number of param-
eters also increases the chances of falling into a non-
identifiable model, using the same dataset [19], given
the same number of curves to be fitted. Although some
techniques have been proposed to bypass this problem,
they often require more data than what is available.

Another approach for capturing the complex dynam-
ics of local epidemics is to use SIRD/SEIRD models
with time-varying parameters. For example, if 8 corre-
sponds to the infection rate of susceptible individuals,
the use of masks or social isolation, therefore, decreases
its value [20,21]. In this context, Dehning et al consid-
ered a SIR model with a time-varying infection rate
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and conducted Bayesian inference to identify times of
variation of this rate and connect these times to non-
pharmaceutical interventions implemented in Germany
at the early stages of the COVID-19 epidemic [22].
The introduction of time-varying parameters usually
requires confining their variation to an analytic func-
tion, which may not represent the true temporal dynam-
ics of parameters, once many of them are not directly
measurable. This choice also affects the generality of
the model, as a particular choice of the functional form
that describes a parameter may not apply in another
context. Furthermore, compartmental models struggle
to take into account testing and contact tracing in their
dynamics, which further complicates the use of time-
varying functions [23]. Even if we overcome this prob-
lem, the individual policies, social behavior and testing
of each country should make the generalization of these
models for other countries nearly impossible.

The challenge faced by epidemic models also
increases, as new variants with higher transmissibil-
ity or immune escape emerge, such as the variants of
concern (VOC) Alpha (B.1.1.7), Beta (B.1.351), Delta
(B.1.617.2), Gamma (P.1), and Omicron (B.1.1.529).
The appearance of each VOC is associated with local
or global change in the temporal dynamics of parame-
ters associated with the pandemic [24,25]. For exam-
ple, the Alpha variant is associated with a 50% increase
in transmissibility. Such an increase may reflect on a
change in § over time as the variant spread through a
region [26].

Aiming to provide an alternative to fitting the lim-
ited amount of data and producing accurate short-term
predictions, we propose a time-window SEIRD model,
with time-varying window size as the rate of effective
parameter change is not the same throughout the epi-
demic, and different window sizes may be more appro-
priate at different times. The parameters of the model
may be considered constant through the time-window
being fitted (see Sect. 3.1 for further details) and the
number of parameters of the model remains the same,
decreasing the chances of falling into a non-identifiable
problem. This procedure allows capturing the temporal
variations of epidemiological parameters along time-
windows without requiring the model to be defined with
time-dependent parameters, making it possible to fit a
curve with a simple model with piece-wise constant
parameters within each time-window, emulating the
behavior of time-varying parameters, but not defined by
an analytic function. Time-window methods are com-

mon in nowcasting (correction for reporting delays)
methods for epidemiological surveillance [27-29].

To the best of our knowledge, the framework pro-
posed by Liao et al. [30] is the one that most resembles
what is being proposed here. Although both method-
ologies use an approach in which data are divided
into time-windows, the fundamental difference is that
the methodology of Liao et al. [30] uses an exhaus-
tive search associated with the least-squares method to
determine the optimal parameters of the compartmen-
tal model, and a machine learning method is employed
to track and predict the values of parameters, based on
the variation of the values of the basic reproduction
number and a growth rate in the historical data. On the
other hand, we adopt a Bayesian approach, so that the
knowledge obtained from past windows is propagated
to the later windows, to gradually fit the data and com-
pose the behavior of the model.

Keeping in mind the choice of using time-windows
to analyze data, the first idea might be to deal with
each window separately and fit every one of them
independently. As we will show, this can be an inef-
ficient approach, and we propose an alternative solu-
tion to connect information between consecutive time-
windows and use this to improve model fitting. For this
purpose, we need an inference algorithm capable of
using information acquired in a previous window to fit
the next one.

In this work, we choose to use ABC-SMC (approx-
imate Bayesian computation with sequential Monte
Carlo) [31], which generates a posterior distribution
for the parameters of the model in an arbitrary win-
dow. This posterior distribution can then be used as the
prior distribution for the next time-window, and this
procedure goes for every following time-window in the
dataset.

In Results section, we present the fitting of data on
COVID-19 cumulative cases and deaths in Brazil, as a
proof of concept of the improvement gained by fitting
time-windows using past window posteriors instead of
flat priors.

3 Methodology

3.1 Time-window fitting and the use of past window
posteriors

Our goal is to analyze an epidemiological time series of
cumulative infected and dead individuals, considering
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a model of coupled ordinary differential equations. We
consider long enough time periods over which the data
spam over, such that the epidemiological parameters
change over time. Such a change can be due to a par-
ticular social behavior, governmental policies, environ-
mental factors, or natural selection—all of which may
lead to the emergence of multiple epidemic waves. In
this case, one may suppose that the principles for the
system’s time evolution are the same, but some of its
properties have changed over time, that is, the model is
the same over the time series, although the parameters
probably change.

As we are not interested in a functional form for
the time variation of the model parameters, we take
an alternative approach. If one considers only a small
enough time interval of the dataset, then this interval
should be reasonably described by a model with con-
stant parameters. Motivated by this fact, we divide the
epidemic data into multiple time-windows, each to be
fitted separately with the same model, but obtaining
different sets of piece-wise constant parameters.

The fitting algorithm starts by choosing a number N
of days to be considered in each time-window. We also
need to choose by how many days one window shall be
shifted from the previous. This shift will be denoted by
d (days). Therefore, if the first time-window goes from
day 1 until day N, the second time-window will go from
day 1 4 d until day N 4 d. Notice that, ifd < N, there
will be an overlap of N — d days between consecutive
windows. We fit the model to the data of a time-window
using the ABC-SMC algorithm that generates a poste-
rior distribution for the parameters, which in turn can
be used to make predictions for periods following the
end of the current time-window.

The use of the ABC-SMC algorithm for fitting the
model implies the choice of a prior distribution for
the model’s parameters. For simplicity, for each time-
window, one can start by adopting an uniform prior
distributions for all parameters (with different ranges
depending on the nature of each parameter), in the case
of lack of knowledge to build more informative priors.

We propose a way to go beyond the flat prior simpli-
fication, still without considering the knowledge gained
from the data, but only the knowledge obtained while
fitting data on past time-windows. By hypothesis, if we
consider that the data are described by an ordinary dif-
ferential equation model with time-varying parameters,
the difference between the distributions of such param-
eters for consecutive time-windows should be small,
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especially in the case that an overlap exists between
consecutive time-windows. Therefore the posterior dis-
tribution obtained for the n-th window should provide
a reasonable initial estimate—the prior distribution—
for the (n 4 1)-th window. So we propose to use this
approach instead of a flat prior in order to provide use-
ful information for the ABC-SMC fitting algorithm,
further optimizing the process.

3.2 Adaptive window size

A possible problem with dividing the epidemic data
into multiple time-windows is how to choose the win-
dow sizes. Itis important to notice that varying window
sizes may be more appropriate for different windows
of the time series. To counter that, we developed a sim-
ple algorithm to choose the window size of the n-th
window based on the goodness-of-fit in the past two
windows.

First, a given size s; is chosen for the first time-
window, and we set the lower and upper bounds for
window sizes, denoted by Smin and smax, respectively.
In turn, the step size in the window size variation, As,
is chosen to be the same as the offset d between the
last days of consecutive time-windows. Then, the sec-
ond time-window will have the same size as the first
one, that is, s = s1. But, starting from the third time-
window, the window size will be chosen by the follow-
ing algorithm: let y! be the actual data for the m-th
day of the time-window, whereas f}}n denotes the pre-
diction of the model for the same day. If n indexes the
size s,, of the n-th time-window, the normalized root
mean square deviation (NRMSD) for the i-th compo-
nent of the data vector—denoted by &/ —over the same
window is given by

Z ()A’;n - )’;in)z
Ky

m n

i i
Ymax Ymin

so that
&n = Zsﬁ, , (2)
i

where i identifies the component of which the NRMSD
is being calculated, the index m runs over the days
inside the n-th time-window. Then, for the n-th win-
dow, with n > 3, the window size is chosen according
to Algorithm 1.
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Algorithm 1 Window size selection for the n-th time-
window, for n > 3.
if £,_1 < &,_7 then
if 5,1 < Smax then
Sp < Sp—1 + As
else
Sp <= Smax
end if
else
if 5,1 > Smin then
Sp < Sp—1 — As
else
Sp < Smin
end if
end if

The intuition behind this procedure is that smaller
time-windows are easier to fit. In this case, we measure
the goodness-of-fit by ¢, so that the smaller ¢, the bet-
ter the quality of the fit. Therefore, if ¢ increases from

The posterior distribution for a given window is used as the prior
for the next one, providing information for the following windows

| S Vi

one time-window to the next, it can be understood that
the fitting may require a greater deal of effort. If we
assume that our model should give a good description
of the data in a small enough time span, we could expect
to improve the quality of the fit by making the time-
window smaller, the way we proceed to the next time-
window. On the other hand, if & decreases between two
time-windows, recalling that consecutive windows, n
and (n 4 1), have an overlap of 5,41 — As points, we
can understand that the new As points at the end of the
(n + 1)-th window are in good agreement, in terms of
model parameters, with the behavior of the data in the
n-th window. Therefore, increasing the window size
can allow the simultaneous consideration of a larger
range of the time-series that is related to the same set
of parameters of the chosen model, decreasing the pos-
sibility of overfitting and improving generalization.

The parameters extracted from the
most recent window are used to

‘ i / generate short term forecasts

parameter x parameter x parameter x
All
Ev’ parameters /
‘2| begin with a / D
% uniform prior - . .
= distribution at / The most recent window contains the
o the first d information of the recent parameters
= window \ that fitted the curve
S A
é £ 1 Consecutive windows have a
= | | ~——— fixed offset of d days from the
i last day of them both
A
The window size is
automatically adjusted based
on the fitting errors of the
/ past two windows
/ ———— |
re
._.../

>

Time

Fig. 1 Visualization of the framework. The data (dotted curve)
of a dynamical variable, such as the cumulative reported cases
of an epidemic, are fitted using windows of adaptive size (blue
boxes). The prior of the parameters of the model is given by
flat distributions in the first window, and the obtained posterior

distribution is used as the prior to the following window. At the
end, the past window generates predictions (dark purple curve)
using the best parameters retrieved from the fit of the past win-
dow. From these predictions, a variability region is constructed
(shaded purple region)
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The lower bound spin can be set considering the
number of free parameters in the fitting problem, bear-
ing in mind that fitting very few data points can lead to
overfitting, so it is reasonable to have at least more data
points than free parameters. For the upper bound sy;x,
it is more complex to set a strict natural limit, but it is
worth recalling the motivation regarding the approach
to divide the data into time-windows: there is a limit
on how long a fixed set of parameters can adequately
fit the data, so we set an upper bound on the maximum
expected range describable by a single constant set of
parameters.

Section S2 of Supplementary Information text
presents a practical comparison between considering
fixed and adaptive window sizes, showing that the
results are rather similar, but adaptive window size
Algorithm 1 does not require one to choose a specific
window size.

Figure 1 graphically summarizes the methodology
described in this section for the inference of model
parameters and generation of forecasts in each time-
window of the considered data.

108 Days 31-130

40 60 80 100 120
Day

P
o o

Cumulative cases
o o
o at

ot
ot

t
o

240 260 280 300 320

Fig. 2 Prediction for 10 days into the future along with the
epidemic data for comparison, obtained via the past window
approach. The results were split into four subplots for clarity
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4 Application to epidemic forecasting

We implemented the time-window model with an
ABC-SMC algorithm for curve fitting. This means
that we divide the epidemic curve into multiple time-
windows, which are considered separately by fitting a
time-independent compartmental model. The epidemic
model chosen is a SEIRD model including infection by
pre-symptomatic individuals (for details see [32,33])
described by ordinary differential equations system (3).

Br and B stand for the infection rate of infected
and exposed individuals, respectively, ¢ represents the
inverse of the incubation period, y and u express the
recovery and death rates, respectively. The model is
solved using a 4th-order Runge—Kutta algorithm sub-
jected to the constraint N = S+ E+ 1+ R + D,
and with the initial conditions S(0) = Sy, E(0) = E),
1(0) = Ip, R(0) = Rpand D(0) = Dy. All five param-
eters are set free for the fitting process, alongside the
total population N, from which the initial condition for
S is derived according to So = N — Ip — Eo — Ro — Dy.
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Data
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[

of details. Small margins show fluctuations over the best results
obtained by 10 different executions
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Fig. 3 Selected window size, for both cases of using flat priors
or past window posteriors, considering five executions for each
case
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For our analysis, we consider data on cumulative
cases and deaths for different countries. Therefore, at
the beginning of each time-window, we only have initial
values for deaths D¢ and cumulative cases Cy. We need
a way to estimate the initial values Ey, Iy and Ry. For
doing so, we define new parameters cg and cp to be
fit together with the system of equations (3), such that
Ry = cr(Co — Do) = Iop = (1 — cg)(Co — Dyp), and
Eo = cg(Co — Dy).

5 Results and discussion

Here, we present different comparisons between results
from flat prior and past window posterior approaches,
fitting the SEIRD model to epidemic data on cumula-
tive cases and deaths of COVID-19 in Brazil. To run
the ABC-SMC with adaptive time-window sizes, we
set the minimum time-window length spin = 10 days
and the maximum window length to spmax = 50 days.
Before proceeding to the comparison between dif-
ferent approaches, we can already see, in Figure 2, the
piece-wise 10-day predictions from fitting throughout

—— Flat Prior
—— Past Window Posterior

H
9

Fit Window NRMSD

=
o
b

10 20 30 40 50 60 70
Time-window

Fig.4 Normalized RMSD over the fitting window, for both cases
of using flat priors or past window posteriors, considering five
executions for each case

10!

—— Flat Prior
—— Past Window Posterior

=
<

Predicition Window NRMSD
<

0 10 20 30 40 50 60 70
Time-window

Fig. 5 Normalized RMSD over the prediction window, for both
cases of using flat priors or past window posteriors, considering
five executions for each case

the curve of cumulative cases of COVID-19 in Brazil.
The curve is divided into four subplots for better visu-
alization. Since windows are shifted by five days and
predictions are computed for ten days, we only show
forecasts of alternated windows, in order to avoid over-
lap in prediction curves. Although the first predictions
tend to overestimate the growth due to a lack of infor-
mation regarding the epidemic parameters, the remain-
ing predictions describe the epidemic curve fairly well,
capturing the general trend of cases over different sce-
narios. In supplementary figures S5 and S6 one can also
see the fit, and the following forecast, for each separate
time-window along the epidemic curve of Brazil for
both approaches. In these windows, it is possible to see
that the past window posterior approach leads to more
consistent fittings, with smaller variation between dif-
ferent runs of the method.

Figure 3 shows the mean, with standard deviation,
of the windows’ sizes, by window, over 10 executions
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Fig. 6 Normalized RMSD for every day of the prediction window, for both cases of using flat priors or past window posteriors,

considering ten executions for each case
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of the ABC-SMC fitting, starting from a 30-day time-
window. More important than the actual average win-
dow size is the fluctuation around it. The window size
selection algorithm presents a better convergence to
the optimal window size when combined with the past
window posterior approach. This can also be seen as a
hint to the convergence improvement of the ABC-SMC
by the use of past window’s posteriors instead of flat
priors.

We proceed by comparing values of ¢ over each
time-window considering the quality of both the fit and
the prediction. Figures 4 and 5 show the fit and pre-
diction NRMSDs, respectively, for each time-window
of the data on Brazil. Using the past window poste-
rior as an informative prior on the current value of
the epidemiological parameters leads to an NRMSD
approximately two orders of magnitude smaller. Dur-
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ing the prediction procedure, the past window posterior
approach also shows a smaller ¢, this time different by
one order of magnitude. Both approaches were fit with
1000 accepted samples in each posterior of the ABC-
SMC algorithm, and the curves are the results of 10
runs of the fitting procedure.

The accumulation of information along the fitting
of consecutive time-windows may be analyzed by con-
sidering the evolution of ¢ through the epidemic data.
During the first few time-windows, NRMSD curves
in Figures 4 and 5 for the flat prior approach and
the past window approach are similar to each other,
which indicates that there is not enough information
yet about the parameter’s values to be learned by the
past window posterior approach. As we fit more time-
windows, information is accumulated by the past win-
dow approach, leading to smaller NRMSD values.
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Looking at the prediction error on each day of the
prediction window, we get the heat map presented in
Figure 6 comparing the error magnitude for each day
of the prediction window in each of the time-windows
of the curve. Here, the relative error is calculated as
the difference between predicted daily cases and the
actual data on it, divided by the data value for normal-
ization. In both cases, the first days show larger errors.
However, the past window posterior approach leads to
smaller error by day for a longer period. Closer to the
35th time-window, the flat prior approach drastically
increases its error through the prediction window (as
shown by the purple color). This is further evidence
that using the adaptive window method with the past
window posterior approach is a more adequate method
for generating forecasts for the next few days of the
epidemic curve.

The same analysis presented so far is also done con-
sidering data from Germany, India, Japan, South Korea,
USA and UK, and it can be found in section S5 of Sup-
plementary Information. The results remained consis-
tent for other countries, as one can see in Figure 7,
even though the epidemic curves from these countries
are quite different from one another, which indicates
the robustness of the method.

Figure 7 shows the box-plots of the distribution
of the ratio &fai/epast between fit NRMSDs in each
window, obtained via flat prior and past posterior
approaches. We considered five different initial win-
dow sizes for each country studied and ten different
executions of the inference algorithm. In all countries,
over 96% of the ratio distribution is above 1, indicat-
ing that efat > &past. Therefore, in more than 96% of
the time, the past posterior approach leads to a better
model fitting to the data.

We can conclude that separating complex dynami-
cal data in time-windows can allow for its tractability
through simple models, and we present a way to do this
via approximate Bayesian computation. It is clear that
considering data in the past, when choosing the prior
distribution for a time-window, leads to better results. In
this work, we consider on cases and deaths of COVID-
19, but, in principle, this same methodology could be
applied in many different scenarios involving dynami-
cal quantities.
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