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We consider the relaxation of the quantum harmonic oscillator in the framework of the standard master 
equation. Analyzing the known solutions, we have found some new interesting effects. Namely, we show 
that the evolution of some parameters, such as the energy fluctuations, the Mandel factor, the invariant 
uncertainty product and quantum purity, can exhibit non-monotonous behavior with big deviations from 
the initial and final values. Also, we show that highly excited initial Fock states maintain their non-
classical nature longer than low excited ones. During the evolution, the quantum purity of these states 
stays at almost constant low level during a long period, after the fast decrease initially and before the 
fast return to the final value at the end.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

We consider the standard master equation for the quantum 
damped harmonic oscillator in the form

dρ̂

dt
+ iω

[
â†â, ρ̂

]
= γ (1 + ν)

(
2âρ̂â† − â†âρ̂ − ρ̂â†â

)

+ γ ν
(

2â†ρ̂â − ââ†ρ̂ − ρ̂ââ†
)

. (1)

Here â and â† are the boson annihilation and creation operators, 
satisfying the commutation relation 

[
â, â†

] = 1, and ρ̂ is the sta-
tistical operator. The parameter ν is the mean number of quanta 
in the thermal reservoir, ω is the oscillator eigenfrequency and γ
is damping coefficient. The right-hand side of Eq. (1) is frequently 
called nowadays as the Lindblad operator, although this form was 
derived in the framework of different approaches in the mid-1960s 
[1–7]. Exact solutions to Eq. (1) were obtained by many authors in 
different representations, discrete and continuous. However, some 
interesting consequences of these solutions were not noticed until 
now. Therefore, our aim is to study that consequences, namely, the 
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non-monotonous evolution of the quantum number variance, the 
Mandel factor, the invariant uncertainty product and the purity.

2. Solution to the master equation in the Fock basis: the 
generating function and its applications

The immediate consequence of Eq. (1) is the infinite set of 
linear ordinary differential equations for the diagonal elements 
pn ≡ 〈n|ρ̂|n〉 in the Fock basis, i.e., the probabilities of finding n
quanta in the state ρ̂ ,

ṗn = 2γ (1 + ν) [(n + 1)pn+1 − npn]

+ 2γ ν [npn−1 − (n + 1)pn] . (2)

Equations (2) were derived and solved even before the operator 
equation (1), e.g., in Refs. [8,9].

The simplest way of solving the system (2) is to use the gener-
ating function of an auxiliary variable z,

G(z; t) ≡
∞∑

n=0

pn(t)zn. (3)

Indeed, one can easily see that this function satisfies a simple lin-
ear first-order partial differential equation

∂G = 2γ (1 − z)[1 + ν(1 − z)]∂G − 2γ ν(1 − z)G, (4)

∂t ∂z
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so that it can be easily solved in the general form [7,9–12] (par-
ticular cases of the initial thermal, coherent, and Fock states were 
also considered in [13])

G(z, u) = [1 + νu(1 − z)]−1G0

(
z + u(1 + ν)(1 − z)

1 + νu(1 − z)

)
, (5)

where G0(z) ≡ G(z, 0) and u ≡ 1 − exp(−2γ t). Putting z = 1 in 
(5) we verify the normalization condition G(1, t) ≡ 1. Neither the 
frequency ω nor the Planck constant enter formula (5).

The derivatives of the generating function with respect to pa-
rameter z, taken at z = 1, give the statistical moments of the 
number operator n̂ ≡ â†â. In particular,

〈n̂〉 = ∂G/∂z|z=1 , 〈n̂(n̂ − 1)〉 = ∂2G/∂z2
∣∣∣

z=1
. (6)

Using (5) and (6), one obtains the time-dependent mean number 
of quanta

〈n̂〉(u) = νu + n0(1 − u), n0 ≡ 〈n̂〉(0). (7)

This well known formula shows a monotonous transition from the 
initial value n0 to the final value ν . But the behavior of the higher 
order moments can be more interesting, and this is the subject of 
our study. The simplest examples are the photon number variance

σ = 〈n̂2〉 − 〈n̂〉2 =
[
∂2G/∂z2 − (∂G/∂z)2 + ∂G/∂z

]
z=1

, (8)

and the Mandel factor [14]

Q ≡ 〈n̂(n̂ − 1)〉 − 〈n̂〉2

〈n̂〉 = ∂2G/∂z2 − (∂G/∂z)2

∂G/∂z

∣∣∣∣∣
z=1

, (9)

which is frequently used to distinguish between the sub-Poissonian 
(Q < 0), Poissonian (Q = 0) and super-Poissonian (Q > 0) statis-
tics. Using (5) and (6), we find (with σ(0) ≡ σ0)

σ(u) = νu(νu + 1) + (1 − u)2σ0 + n0u(1 − u)(1 + 2ν), (10)

Q (u) = (νu)2 + n0(1 − u) [(1 − u)Q (0) + 2νu]

νu + n0(1 − u)
. (11)

The evolution of these quantities depends not only on their own 
initial and final values, but on the initial mean value n0, too.

3. Evolution of the photon number variance

The behavior of function σ(u) in the interval 0 < u < 1 can be 
understood, if one looks at its derivatives at u = 0 and u = 1:

(dσ/du)u=0 = ν − 2σ0 + n0(1 + 2ν), (12)

(dσ/du)u=1 = (ν − n0) (1 + 2ν). (13)

Comparing (13) with the difference between the initial and final 
values, σ0 − ν(ν + 1), we conclude that σ(u) is non-monotonous 
function, crossing the level ν(ν + 1), under the condition

[σ0 − ν(ν + 1)] (n0 − ν) < 0. (14)

The extremal values

σext = 4σ0ν(ν + 1) − [ν + n0(1 + 2ν)]2

4
[
ν2 + σ0 − n0(1 + 2ν)

] (15)

are achieved at

ue = 2σ0 − ν − n0(1 + 2ν)

2
[
σ + ν2 − n (1 + 2ν)

] . (16)

0 0
Fig. 1. Function σ(u) for the initial Fock states with different values of n0 and ν = 1.

Fig. 2. Function σ(u) for the initial coherent states with different values of n0 and 
ν = 2.

In particular, the variances of highly excited initial Fock states, with 
σ0 = 0 and n0 � ν , can achieve very big values σ (F ock)

max ≈ n0(1 +
2ν)/4 at ue ≈ 1/2, before going to the final value ν(ν + 1). Note 
that at this instant we have 〈n̂〉(ue) ≈ n0/2. A typical example is 
shown in Fig. 1.

An interesting case is the initial coherent state with σ0 = n0. 
Then condition (14) means that ν < n0 < ν(ν + 1). But the maxi-
mum continues to exist for n0 > ν(ν +1), provided ν > 1/2. In this 
case, σ(u) ≥ ν(ν + 1) in the whole interval. The maximum can be 
as high as for the initial Fock states, if n0 → ∞, but its position is 
shifted to um ≈ (2ν −1)/(4ν). A typical example is shown in Fig. 2.

If n0 = ν , then we see the monotonous transition

σ(u) = ν(ν + 1) + [σ0 − ν(ν + 1)] (1 − u)2.

On the other hand, if σ0 = ν(ν + 1), then

σ(u) = σ0 + (1 + 2ν) (n0 − ν) u(1 − u),

so that the extremum is achieved exactly at ue = 1/2, with σext =
[ν(3 + 2ν) + n0(1 + 2ν)] /4 being maximum for n0 > ν and mini-
mum for n0 < ν .

If n0 � ν but σ0 � ν(ν + 1), then function σ(u) has the min-
imum when u is close to unity, but this minimum is only slightly 
below the final value ν(ν + 1). Such a situation can happen, e.g., 
for the simple initial superposition
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Fig. 3. Function σ(u) for ν = 1, n0 = 0.1 and different values of σ0.

|ψ〉 = √
1 − ε|0〉 + √

ε|N〉, ε � 1, N � 1, (17)

when n0 = εN but σ0 = ε(1 − ε)N2. Although the initial state is 
“almost vacuum” in this example, the behavior of the variance is 
totally different from the case of the initial exact vacuum state. 
Fig. 3 gives some illustrations.

4. Evolution of the Mandel factor

The evolution of Q -factor from the initial value Q 0 to the 
final thermal value Q f = ν is very simple in the case of zero-
temperature reservoir with ν = 0, when Q (u) = Q 0(1 − u), so that 
Q (u) goes to zero without changing its sign. But if ν > 0, then the 
evolution can be more interesting.

It can be convenient to rewrite Eq. (11) as

Q̃ (u) = u2 + a(1 − u) [(1 − u)q + 2u]

u + a(1 − u)
, Q̃ ≡ Q /ν, (18)

where a = n0/ν and q = Q 0/ν > 0. For the initial thermal state 
with Q 0 = n0 we have q = a and the monotonous behavior Q (u) =
〈n̂〉(u), in accordance with the property of the thermal state to 
remain thermal with time dependent temperature. Also, the evo-
lution is monotonous, if a = 1: Q̃ (u) = (q − 1)(u − 1)2 + 1.

Since 
(

dQ̃ /du
)

u=1
= 1 − a, for any value of q, function Q (u)

possesses extremal values (maximum for q < 1 or minimum for 
q > 1) under the condition

(a − 1)(q − 1) < 0. (19)

Looking for extremal values, we arrive at a quadratic equation with 
respect to the variable u, which gives two solutions,

ue = −aB ± √
aB(q − a)

B(1 − a)
, (20)

where B = 1 + aq − 2a = 1 − a + a(q − 1). If q > 1, then the ex-
tremum (minimum) exists for a < 1, due to the condition (19). In 
such a case, B > 0, as well as q −a = q −1 +1 −a. Consequenly, the 
argument of the square root in (20) is positive. Moreover, we have 
to choose the positive sign in front of the square root, in order to 
have positive value of ue . Similar reasonings show that for q < 1
we have B < 0 and q − a < 0. Then the argument of the square 
root is positive again. In this case, a > 1, so that B(1 − a) > 0, but 
we have to choose negative sign in front of the square root, in or-
der to obtain the solution satisfying the condition ue < 1. Thus, we 
obtain the following extremal values of the ratio Q̃ = Q /ν:
Fig. 4. Function Q̃ (u) for the initial coherent states with different values of param-
eter a.

Q̃ max

∣∣∣
q<1

= 2
[
a(a − q) − √

a(1 + aq − 2a)(q − a)
]

(1 − a)2
, (21)

Q̃ min

∣∣∣
q>1

= 2
[
a(a − q) + √

a(1 + aq − 2a)(q − a)
]

(1 − a)2
. (22)

If q = 1, then we find

Q̃ ext

∣∣∣
q=1

= 2
√

a

1 + √
a
, ue =

√
a

1 + √
a
. (23)

In this case, the normalized Mandel factor can rapidly attain a deep 
minimum if a � 1, but its maximum cannot be higher than 2 if 
a � 1. When Q (u) attains the extremal value, the mean number 
of quanta equals 〈n̂〉(ue) = √

n0/ν .
Note that condition (19) corresponds to the situation when 

function Q̃ intersects the line Q̃ = 1 at u < ue < 1 and attains 
a maximal or minimal value later at u = ue . However, the exam-
ple (23) shows that the maximal or minimal values can exist even 
without the intersection with the line Q̃ = 1. This is the conse-

quence of the expression 
(

dQ̃ /du
)

u=0
= 2 − q(1 + a)/a. It shows 

that the sub-Poissonian states (with q < 0) cannot become “more 
sub-Poissonian” during the evolution. But initial super-Poissonian 
states with 1 < q < 2a/(1 +a) can become “more super-Poissonian” 
for some interval of time.

4.1. Initial coherent states

For the initial Poissonian statistics (the simplest example is the 
coherent state), the behavior of the ratio Q /ν is determined by 
the ratio a = n0/ν only:

Q̃ (u) = u [u + 2a(1 − u)]

u + a(1 − u)
. (24)

Fig. 4 shows function Q̃ (u) for different values of parameter a. 
We see that this function is monotonous for a < 1, but it has a 
maximum for a > 1:

Q̃ max = 2a
(
a − √

2a − 1
)

(1 − a)2
, a > 1. (25)

This maximum is achieved at

um = a

a − 1

(
1 − 1√

2a − 1

)
. (26)

Note that Q̃ max grows monotonously as function of a, from the unit 
value at a = 1 to the maximal value 2 for a → ∞. On the other 
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Fig. 5. The dependence Q (u) with ν = 1 for the initial Fock states. Note the inver-
sion of the order of lines at u = 1/2.

hand, the position of maximum, um , goes to unity for a → 1 and 
a → ∞, so that it has some minimal value. This minimal value can 
be found analytically: u(min)

m = 2(
√

2 − 1) ≈ 0.83 for a = 2 + √
2 ≈

3.41. For this value of um we have Q̃ max = 2(2 − √
2) ≈ 1.17.

4.2. Initial sub-Poissonian states

The consequence of Eq. (18) is the partial derivative

∂ Q̃

∂a
= u(1 − u)[u + q(1 − u)]

[u + a(1 − u)]2
. (27)

This derivative is always non-negative for q ≥ 0. In this case, the 
lines with different values of parameter a do not intersect inside 
the interval 0 < u < 1, and Q̃ increases with increase of a for any 
fixed value of u, as we clearly see in Fig. 4.

The situation is more interesting for the so-called “non-
classical” initial states with q < 0. Then ∂ Q̃ /∂a < 0 at the initial 
stage of evolution with small values of u, while ∂ Q̃ /∂a > 0 at the 
final stage. The inversion point is ui = |q|/(1 + |q|). Such a behav-
ior of Q (u) is illustrated in Fig. 5 for the “most nonclassical” initial 
Fock states with Q 0 = −1.

For initial “non-classical” states with Q 0 < 0, it can be interest-
ing to know the “classicalization” (scaled) time, i.e., the value uc

when Q (uc) = 0. Since the value of the normalized Mandel factor 
at the inversion point is positive: Q̃ i = |q|/(1 + |q|) (it is curious 
that Q̃ i = ui ), we have uc < ui . This means that initial states with 
bigger values of n0 maintain their “non-classical” nature longer 
than states with smaller values of n0. In particular, more excited 
are the initial Fock states, more “robust” against the “classicaliza-
tion” they are – a quite “anti-intuitive” result. The solution to the 
equation Q (uc) = 0, satisfying the condition 0 < uc < 1, can be 
written as

uc = |Q 0|
|Q 0| + ν

(√
1 + |Q 0|/n0 + 1

) . (28)

It clearly shows that ∂uc/∂n0 > 0 for all values of n0 and |Q 0|. 
But the difference is not big. For example, the relative difference 
between the values of uc for the Fock states with n0 = 1 and n0 →
∞ equals (uc∞ − uc1) /uc1 = ν

(√
2 − 1

)
/(1 + 2ν), so that it does 

not exceed 20% in the high temperature case ν � 1, when uc∞ ≈
(2ν)−1 � 1.
Fig. 6. The dependence Q̃ (u) for the initial squeezed vacuum states with a = 1/2
and different values of the final mean quantum number ν .

Fig. 7. The dependence Q̃ min(q) for different values of parameter a.

4.3. Initial super- and hyper-Poissonian states

An important example of super-Poissonian states is the initial 
squeezed vacuum state with Q 0 = 1 + 2n0. Then q = 2a + ν−1, and 
condition (19) can be satisfied for 1 > a > (ν −1)/(2ν), with q > 1. 
Fig. 6 shows function Q̃ (u) for a = 1/2 and ν = 1/2, 1, 2 (i.e.,
q = 3, 2, 1.5). Another example corresponds to so called “hyper-
Poissonian” states with Q 0 � 1 + 2n0 [15,16]. Although the min-
imal value (22) turns out not very far from unity for a � 1 and 
aq � 1, Q̃ min ≈ 1 − (4aq)−1, it can be appreciable for moderate 
values of the product aq, as shown in Fig. 7.

5. Evolution of the invariant uncertainty product

We define the dimensionless “coordinate” and “momentum” 
quadrature operators as

x̂ =
(

â + â†
)

/
√

2, p̂ = i
(

â† − â
)

/
√

2.

Their co-variances σαβ ≡ 〈α̂β̂ + β̂α̂〉/2 − 〈α̂〉〈β̂〉 (with α, β = x, p) 
obey the equations, which are consequences of (1),

σ̇xx = 2
(
ωσxp − γ σx + γ σ∗

)
, σ∗ ≡ ν + 1/2, (29)

σ̇pp = 2
(−ωσxp − γ σp + γ σ∗

)
, (30)

σ̇xp = ω
(
σpp − σxx

) − 2γ σxp. (31)
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The immediate consequence of Eqs. (29) and (30) is the equation 
for the dimensionless energy of quantum fluctuations,

Ė = 2γ (σ∗ − E) , E ≡ (
σxx + σpp

)
/2, (32)

whose solution is another form of Eq. (7):

E(t) = σ∗u + (1 − u)E(0). (33)

Another interesting consequence of all three equations, (29)–
(31), is the following equation for the Invariant Uncertainty Product
(IUP) � ≡ σxxσpp − σ 2

xp :

�̇ = 4γ [σ∗E(t) − �] . (34)

Note that the oscillator frequency does not enter Eq. (34). This 
is the manifestation of the remarkable property of �: in the ab-
sence of damping, it is conserved in time for any time-dependent 
quadratic Hamiltonian [17]. Another fundamental property is the fa-
mous Schrödinger–Robertson uncertainty relation � ≥ 1/4, which 
holds for all quantum systems.

Using (33), we obtain the solution to Eq. (34),

�(t) = (1 − u)2�(0) + 2σ∗E(0)u(1 − u) + u2σ 2∗ . (35)

It is worth emphasizing that this solution holds for arbitrary initial 
quantum states. Note also, that the initial values �(0) and E(0) are 
independent in the general case (satisfying the restrictions �(0) ≥
1/4 and E(0) ≥ 1/2). In the context of our study, we wish to know, 
when the evolution given by Eq. (35) is monotonous or not. Simple 
indicators of non-monotonicity are opposite signs of the derivative 
d�/du at u = 0 and u = 1. Straightforward calculations result in 
the inequality

[σ∗E(0) − �(0)] [σ∗ − E(0)] < 0. (36)

It is not satisfied for all initial states with the property σxx = σpp

and σxp = 0, such as the thermal, coherent and Fock states, be-
cause � = E2 for such states, so that the left-hand side of (36)
equals E (σ∗ − E)2 > 0. Consequently, the evolution of �(t) is 
monotonous for all such states:

�(t) = [uσ∗ + (1 − u)E(0)]2 . (37)

However, the evolution of � can be non-monotonous for pure 
squeezed states with σxx = σpp and �(0) = 1/4, provided the ini-
tial energy of fluctuations is high enough, E(0) > σ∗ . Some ex-
amples are shown in Fig. 8. For highly squeezed initial states 
with E(0) � σ∗ , the maximum of �(u) is achieved near the point 
u = 1/2, with �max ≈ σ∗E(0)/2.

6. Evolution of the quantum purity

The value of the invariant uncertainty product � completely 
determines the value of quantum purity μ = Tr

(
ρ̂2

)
for arbitrary 

Gaussian states, according to the formula [18,19]

μ = (4�)−1/2. (38)

Therefore, the purity goes monotonously from the initial value to 
the final one for the thermal and coherent states, but it can show 
a non-monotonous behavior for squeezed states. However, the be-
havior of �(t) cannot be translated to the behavior of purity for 
non-Gaussian states. The simplest example is the evolution of the 
purity of the initial Fock state |m〉 in the zero-temperature thermal 
reservoir (ν = 0). Both the initial and final states are pure in this 
case, but the quantum purity can drop to very low intermediate 
values in the process of evolution.
Fig. 8. The dependence �(u) of the invariant uncertainty product for initial pure 
squeezed states with different initial energies of fluctuations E(0); the reservoir 
parameter ν = 3.

The consequence of (3) and (5) with G0(z) = zm and ν = 0 is 
the diagonal photon distribution

pn(t) = m!
n!(m − n)! (1 − u)num−n. (39)

Since the off-diagonal elements of the density matrix in the Fock 
basis are zero for all times in the case under study, the purity has 
the form

μF ock =
m∑

n=0

p2
n(t) = u2m F

(
−m,−m;1; (1 − u)2/u2

)

= (2u − 1)m Pm

(
1 − 2u + 2u2

2u − 1

)
, (40)

where F (a, b; c; z) is the Gauss hypergeometric function and Pm(z)
the Legendre polynomial. Here we used formula 7.3.1.171 from 
[20],

F (−m,−m;1; z) = (1 − z)m Pm

(
1 + z

1 − z

)
.

Function (40) attains its minimum at u = 1/2, when it equals

μF ock
min = (2m)!

(2mm!)2
= (2m − 1)!!

(2m)!! . (41)

For m � 1 we have μF ock
min ≈ (mπ)−1/2 � 1. This low value is ex-

plained by the form of the photon distribution function (39) at 
u = 1/2. It is spread over the wide interval of quantum numbers 
m/2 − k < n < m/2 + k with 1 � k � m, in accordance with the 
huge value of the photon number variance σ (F ock)

max = m/4, shown 
in Fig. 1. Inside this interval, p2

n ≈ 2/(πm) = const � 1.
The value μF ock

min can be compared with the minimal value of 
purity μsqz

min = (1 + m)−1/2 for the initial pure squeezed states with 
E(0) = m + 1/2 (and ν = 0). Fig. 9 shows the dependence μ(u) for 
the initial pure vacuum squeezed and Fock states with the same 
values of the initial energy E(0) = m + 1/2 and ν = 0. In this case,

μsqz(u) = [1 + 4mu(1 − u)]−1/2 . (42)

Note that both functions, (40) and (42), possess the symmetry 
μ(u) = μ(1 − u). They demonstrate long almost flat “bottoms” in 
the limit m � 1. Their existence is explained by two factors: 1) the 
asymptotic expansion μ(1/2 + ε) ≈ μmin

(
1 + 2ε2

)
for ε � 1 and 
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Fig. 9. The dependence μ(u) for the initial pure vacuum squeezed (dashed lines) 
and Fock (solid lines) states with the same values of the initial energy E(0) = m +
1/2, for ν = 0.

m � 1; 2) the equal values of the initial derivative dμ/du|u=0 =
−2m.

The non-monotonous evolution of the purity of the initial 
single- and two-mode squeezed states in the squeezed reservoir 
was discovered earlier in [19,21]. A similar behavior for the initial 
cat-like states (superposition of two coherent states of the form 
|α〉 + exp(iθ)| − α〉 [22]) was found in [19,23,24]. However, there 
is an essential difference between these cases. Namely, the mini-
mal intermediate purity of the initial Fock or squeezed states goes 
to zero if E(0) → ∞. On the other hand, although the purity of 
the initial cat-like states also rapidly drops to an almost constant 
intermediate level, this level remains above the value 1/2 even 
in the limit |α| → ∞, if ν = 0 [23]. One more example of non-
monotonous evolution of the purity of the initial vacuum quantum 
state of a selected field mode, interacting with the “bath” of all 
other modes in a 1D ideal cavity with oscillating walls, was given 
in [25]. In all that cases, long periods of almost constant interme-
diate values of the purity were observed.

7. Conclusions

We have demonstrated that the behavior of various quantities 
describing quantum fluctuations (such as the quantum number 
and quadrature variances, the Mandel factor, the quantum purity) 
during the process of standard thermal relaxation can be quite 
nontrivial, depending on the initial conditions. In particular, in-
termediate values of these quantities can be well different from 
the initial and final ones, attaining sometimes high maximums 
and sometimes deep minimums. Moreover, the example of “hyper-
Poissonian” state (17) shows that, sometimes, even small changes 
of the quantum state can result in drastic changes of their statisti-
cal properties. Another interesting and “anti-intuitive” result is the 
increase of “robustness” of sub-Poissonian quantum states against 
the “classicalization” with the increase of the initial mean num-
ber of quanta. In addition, we have demonstrated that different 
measures of “non-classicality” do not correlate in the general case. 
For example, the initial Fock states in the zero temperature reser-
voir are strongly mixed during a long interval of time, but they 
preserve the negative value of the Mandel Q -factor. On the other 
hand, the initial squeezed states also show a low value of quantum 
purity during the same long time intervals, but they can remain 
highly super-Poissonian during these intervals. Note that the evo-
lution of three quantities, the photon number variance, the Mandel 
Q -factor, and the invariant uncertainty product, is completely de-
termined by their own initial values and the initial value of the 
mean photon number (or the mean energy). On the contrary, the 
evolution of the quantum purity depends on many factors, charac-
terizing the initial quantum state.
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